Boughzala, H., Driss, A. \& Jouini, T. (1993). Acta Crı̣st. C49, 425427.

Boughzala. H. \& Jouini, T. (1995). Acta Cryst. C51, 179-181.
Brown. I. D. \& Altermatt. D. (1985). Acta Cryst. B41. 244-247.
Dowty, E. (1993). ATOMS. Version 2.3. Shape Software, 521 Hidden Valley Road, Kingsport. TN 37663, EU.
Driss, A. \& Jouini, T. (1994). J. Solid State Chem. 112, 277-280.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Effenberger, H. \& Pertik, F. (1993). Z. Kristallogr. 207, 223-236.
Enjalbert, R.. Hasselmann. G. \& Galy, J. (1997). Acta Cryst. C53, 269-272.
Eysel, W. \& Jie, Y. C. (1992). Mineralogische und Petrographische Institut, Université Heidelberg, Allemagne.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, Les Pays-Bas.
Macíček, J. \& Yordanov. A. (1992). J. Appl. Cryst. 25, 73-80.
Mairesse, G., Drache, M., Nowogrocki, G. \& Abraham, F. (1990). Phase Transitions, 27, 91-105.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Université de Göttingen, Allemagne.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Université de Göttingen, Allemagne.
Wang, S.-L., Wu, C.-H. \& Liu, S.-N. (1994). J. Solid State Chem. 113, 37-40.

Acta Cryst. (1998). C54, 1733-1735

# $\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Na}_{2}\left[\mathrm{Mo}_{2} \mathbf{V}_{2}^{\mathrm{IV}} \mathbf{V}_{6}^{\mathrm{Y}} \mathrm{O}_{28}\right] \cdot \mathbf{1 0} \mathbf{H}_{2} \mathrm{O}$ 

> Yan Xu, ${ }^{a}$ Ji-Qing Xu ${ }^{a *}$ Guo-Yu Yang, ${ }^{a}$ Yan Xing, ${ }^{b}$ Yong-Hua Lin ${ }^{b}$ and Heng-Qing Jia ${ }^{b}$
> ${ }^{a}$ Department of Chemistry, Jilin University, Changchun, Jilin 130023, People's Republic of China, and ${ }^{h}$ Changchun Institute of Applied Chemistry, Academia Sinica, Changchun, Jilin 130022, People's Republic of China. E-mail:
> people@ mail.jlu.edu.cn
(Received 5 January 1998; accepted 29 June 1998)


#### Abstract

The title compound, tetraammonium disodium octacosaoxo(dimolybdenumoctavanadium)ate decahydrate, is a mixed V/Mo salt which has a well known decavanadate structure. The centrosymmetric polyanion consists of eight $(\mathrm{V} / \mathrm{Mo}) \mathrm{O}_{6}$ and two $\mathrm{VO}_{6}$ edge-sharing distorted octahedra. Each of the two $\mathrm{Na}^{+}$cations is surrounded by six water molecules in a distorted octahedral arrangement. The $\mathrm{V}-\mathrm{O}$ and ( $\mathrm{V} / \mathrm{Mo}$ )- O distances are between 1.571 (6) and 2.432 (5) $\AA$.


## Comment

Numerous crystal structures of decavanadates have been reported, for example, $\mathrm{Na}_{6} \mathrm{~V}_{10} \mathrm{O}_{28} .12 \mathrm{H}_{2} \mathrm{O}$ (Xu et al.,
1996) and $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)_{4}\left[\mathrm{Li}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left[\mathrm{V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Zavalij et al., 1997). However, only one example of the structure of a mixed decaoxometallate of vanadium with molybdenum, $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]_{4}\left[\mathrm{H}_{2} \mathrm{MoV}_{9} \mathrm{O}_{28}\right] \mathrm{Cl} .6 \mathrm{H}_{2} \mathrm{O}$, has been reported (Strukan et al., 1997). We report here the single-crystal structure of the reduced V/Mo decaoxometallate $\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Na}_{2}\left(\mathrm{Mo}_{2} \mathrm{~V}_{2}^{\mathrm{V}} \mathrm{V}_{6}^{\mathrm{V}} \mathrm{O}_{28}\right) .10 \mathrm{H}_{2} \mathrm{O}$, (I), where eight $\mathrm{Mo} / \mathrm{V}$-atom positions in the structure are occupied by six V and two Mo atoms.

(I)

The structure of the centrosymmetric polyanion $\left[\mathrm{Mo}_{2} \mathrm{~V}_{2}^{\mathrm{IV}} \mathrm{V}_{6}^{\mathrm{V}} \mathrm{O}_{28}\right]^{6-}$ is similar to that of the polyanions $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ (Xu et al., 1996; Zavalij et al., 1997) and $\left[\mathrm{MoV}_{9} \mathrm{O}_{28}\right]^{5-}$ (Strukan et al., 1997), and consists of eight $\mathrm{Mo} / \mathrm{VO}_{6}$ and two $\mathrm{VO}_{6}$ edge-sharing octahedra. The O atoms in the anion can be divided into four groups, $\mathrm{O}_{c}, \mathrm{O}_{3 b}, \mathrm{O}_{2 b}$ and $\mathrm{O}_{t}$, where $\mathrm{O}_{t}$ represents a terminal O atom bound to one metal atom ( $\mathrm{Mo} / \mathrm{V}$ or V atom), $\mathrm{O}_{2 b}$ represents a doubly bridging O atom bound to two metal atoms, $\mathrm{O}_{3 b}$ represents a triply bridging O atom bound to three metal atoms and $\mathrm{O}_{c}$ represents a central O atom coordinated to six metal atoms. The distances from metal $M(\mathrm{Mo} / \mathrm{V}$


Fig. 1. The structure of $\left[\mathrm{Mo}_{2} \mathrm{~V}_{2}{ }^{\vee} \mathrm{V}_{6}^{\mathrm{V}} \mathrm{O}_{28}\right]^{6-}$ drawn with $50 \%$ probability displacement ellipsoids. The eight metal $(M)$ positions are randomly occupied by two Mo and six V atoms.
or V ) to oxygen are $M-\mathrm{O}_{t} 1.571(6)-1.692(6), M-$ $\mathrm{O}_{2 b} \quad 1.660(5)-2.175(5), \quad M-\mathrm{O}_{3 b} \cdot 1.869(4)-2.132(5)$ and $M-\mathrm{O}_{c} \quad 2.049(4)-2.432(5) \AA$. A similar trend has been found in $\mathrm{Na}_{6} \mathrm{~V}_{10} \mathrm{O}_{28} .12 \mathrm{H}_{2} \mathrm{O}$ ( Xu et al., 1996), $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)_{4}\left[\mathrm{Li}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left[\mathrm{V}_{10} \mathrm{O}_{28}\right] .4 \mathrm{H}_{2} \mathrm{O}$ (Zavalij et al., 1997) and $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]_{4}\left[\mathrm{H}_{2} \mathrm{MoV}_{9} \mathrm{O}_{28}\right] \mathrm{Cl} .6 \mathrm{H}_{2} \mathrm{O}$ (Strukan et al., 1997). Each $\mathrm{Na}^{+}$cation is coordinated by six water molecules, with $\mathrm{Na}-\mathrm{O}$ distances between 2.289 (7) and 2.555 (7) $\AA$.

## Experimental

The title compound was synthesized by a hydrothermal method. A mixture of $\mathrm{NH}_{4} \mathrm{VO}_{3}, \mathrm{Na}_{2} \mathrm{MoO}_{4}, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$ ( $\mathrm{pH}=6.0$ ) was sealed in a 15 ml Tefion-lined reactor and kept at 433 K for 4 d . On cooling to room temperature, a blue solution resulted. After standing for 2 d , dark-brown single crystals suitable for X-ray diffraction studies were obtained.

## Crystal data

$\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Na}_{2}\left[\mathrm{MO}_{2} \mathrm{~V}_{8} \mathrm{O}_{28}\right]$.$10 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1345.71$
Triclinic
$P 1$
$a=8.595(2) \AA$
$b=10.449(2) \AA$
$c=11.243$ (2) $\AA$
$\alpha=68.96(3)^{\circ}$
$\beta=81.14(3)^{\circ}$
$\gamma=66.90(3)^{\circ}$
$V=866.7(3) \AA^{3}$
$Z=1$
$D_{x}=2.578 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}$ not measured

## Data collection

Siemens $P 4$ diffractometer $\omega-2 \theta$ scans
Absorption correction: empirical via $\psi$ scans
(North et al., 1968)
$T_{\text {min }}=0.582, T_{\text {max }}=0.628$
2975 measured reflections
2237 independent reflections
1965 reflections with
$I>2 \sigma(I)$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.151$
$S=1.065$
2237 reflections
244 parameters
H atoms not located
$w^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0807 P)^{2}\right.$
+6.9369 P ]
where $P=\left(F_{o}^{2}+2 F_{i}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 30 reflections
$\theta=4.72-12.82^{\circ}$
$\mu=2.904 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.36 \times 0.28 \times 0.16 \mathrm{~mm}$
Dark brown
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=25.39^{\circ}$
$h=-1 \rightarrow 9$
$k=-10 \rightarrow 11$
$l=-13 \rightarrow 13$
3 standard reflections every 97 reflections intensity decay: none
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.695 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.698 \mathrm{e}^{\AA^{-3}}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

| $U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U^{i j} a^{\prime} a^{\prime} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Occupancy | $x$ | 3 | z | $U_{\text {eq }}$ |
| Mol | 0.22 (1) | 0.68924 (14) | 0.00360 (11) | 0.47916 (11) | 0.0261 (3) |
| VI | 0.78 (1) | 0.68924 (14) | 0.00360 (11) | 0.47916 (11) | 0.0261 (3) |
| Mo? | 0.38 (2) | 0.52453 (1.3) | $-0.006477(10)$ | 0.74361 (9) | 0.0262 (3) |
| V2 | 0.62 (2) | 0.52453 (1.3) | -0.00647 (10) | 0.74361 (9) | 0.0262 (3) |
| $\checkmark$ | , | 0.4722 (2) | -0.29089 (14) | 0.76315 (1.3) | 0.0261 (4) |
| Mo3 3 | 0.31 (2) | 0.62224 (1.3) | -0.28588 (10) | 0.50293 (10) | 0.0246 (3) |
| V.3 | 0.69 (2) | 0.62224 (1.3) | $-0.28588(10)$ | 0.50293 (10) | 0.0246 (3) |
| Mo4 | 0.10 (1) | 0.8258 (2) | -0.28573 (12) | 0.72318 (12) | 0.0263 (4) |
| $\mathrm{V}_{4}$ | 0.90 (1) | 0.8258 (2) | -0.28573 (12) | 0.72318(12) | 0.0263 (4) |
| Na | 1 | 1.0681 (4) | -0.1668 (3) | 0.1280 (3) | 0.0280 (8) |
| OI | 1 | 0.7391 (6) | 0.1315 (5) | 0.3598 (5) | 0.0181 (11) |
| O2 | 1 | 0.5666 (5) | -0.1244 (5) | 0.6056 (4) | $0.0106(10)$ |
| 03 | 1 | 0.517()(6) | -0.3712 (5) | 0.6313 (5) | 0.0197 (11) |
| 04 | 1 | 0.8711 (6) | -0.1199 (5) | 0.5732 (5) | 0.0173 (11) |
| O5 | 1 | 0.6025 (6) | 0.1205 (5) | 0.5842 (4) | 0.0117 (10) |
| O6 | 1 | 0.6822 (6) | -0.1145 (5) | 0.3843 (4) | $0.0128(10)$ |
| 07 | 1 | 0.3897 (7) | -0.3973 (6) | 0.8623 (5) | 0.0334 (14) |
| 08 | 1 | 0.8270)(6) | -0.3638 (5) | 0.5965 (5) | 0.0177 (11) |
| O9 | 1 | 0.4924 (7) | 0.1001 (5) | 0.8266 (5) | 0.0234 (12) |
| O10 | 1 | 0.7469 (6) | -0.1340 (5) | 0.7942 (4) | 0.0160 (11) |
| 011 | 1 | 0.4385 (6) | -0.1397 (5) | 0.8318 (5) | 0.0196 (11) |
| 012 | 1 | 0.6576 (7) | -0.3810 (5) | 0.4108 (5) | 0.0246 (12) |
| 013 | 1 | 0.7035 (7) | -0.3815 (5) | 0.8239 (5) | 0.0255 (13) |
| O14 | 1 | 1.0205 (7) | -0.3805 (6) | 0.7877 (5) | 0.0298 (13) |
| N 1 | 1 | 1.1775 (9) | -0.2915 (7) | 0.4933 (7) | 0.028 (2) |
| N2 | 1 | 0.7212 (10) | -0.3250 (7) | 0.0729 (7) | 0.038 (2) |
| OW1 | 1 | 0.2067 (7) | -0.0143 (6) | 0.9879 (5) | 0.0320 (14) |
| OW2 | 1 | 0.9702 (8) | -0.3174 (7) | 0.2987 (6) | 0.045 (2) |
| OW3 | 1 | 0.6569 (8) | -0.6826 (6) | 0.7533 (6) | 0.042 (2) |
| OW4 | 1 | 1.0708 (9) | -0.3275 (7) | 0.0252 (6) | 0.044 (2) |
| OW5 | 1 | 1.0207 (8) | -0.0069 (7) | 0.2425 (6) | 0.044 (2) |

Table 2. Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$

| M1-OI | 1.660 (5) | $\mathrm{V}-\mathrm{O} 2$ | 2.297 (4) |
| :---: | :---: | :---: | :---: |
| M1-O4 | 1.781 (5) | M3-012 | 1.600 (5) |
| M1-05 | 1.869 (4) | M3-03 | 1.733 (5) |
| M1-O6 | 1.920 (4) | M3-08 | 1.923 (5) |
| M1-O2 | 2.049 (4) | M3-06 | 2.012 (5) |
| M1-O2' | 2.223 (5) | M3-O5 ${ }^{\text {1 }}$ | 2.104 (5) |
| M2--09 | 1.617 (5) | M3-02 | 2.237 (4) |
| M2--O11 | 1.749 (5) | M4-O14 | 1.692 (6) |
| M2-010 | 1.883 (5) | M4-O13 | 1.742 (5) |
| M2-05 | 2.010 (4) | M4-O10 | 1.873 (5) |
| M2-O6 ${ }^{\prime}$ | 2.132 (5) | M4-O8 | 1.875 (5) |
| M2-02 | 2.215 (4) | M4-O4 | 2.056 (5) |
| M2-V | 3.103 (2) | M4-O2 | 2.432 (5) |
| M2-M4 | 3.105 (2) | $\mathrm{Na}-\mathrm{OW} 2$ | 2.289 (7) |
| V -07 | 1.571 (6) | $\mathrm{Na}-\mathrm{OW}$ | 2.338 (6) |
| $\mathrm{V}-\mathrm{O} 3$ | 1.874 (5) | $\mathrm{Na}-\mathrm{OW} 4$ | 2.346 (7) |
| $\mathrm{V}-\mathrm{Oll}$ | 1.903 (5) | $\mathrm{Na}-\mathrm{OW} 1^{11}$ | 2.356 (6) |
| $\mathrm{v}-\mathrm{O13}$ | 1.947 (6) | $\mathrm{Na}-\mathrm{OW} 3^{\text {¹ }}$ | 2.527 (7) |
| $\mathrm{V}-\mathrm{OJ}^{\prime}$ | 2.175 (5) | $\mathrm{Na}-\mathrm{OW} 1^{1}$ | 2.555 (7) |
| OW2-Na-OW5 | 89.8 (2) | M1-O2-M3 | 96.8 (2) |
| OW2--Na-OW4 | 83.6 (2) | M2-O2-M3 | 167.9 (2) |
| $\mathrm{OW5}-\mathrm{Na}-\mathrm{OW} 4$ | 170.5 (3) | M1-O2-V | 170.4 (2) |
| M1—O2-M2 | 92.2 (2) |  |  |

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $1+x, y, z-1$; (iii) $2-x,-1-$ $y, 1-z$

The occupancy factors of V and Mo on each of the $M 1, M 2$, $M 3$ and $M 4$ sites were refined as least-squares parameters, with the sum constrained to be 1.0 .

Data collection: P4 (Siemens, 1994a). Cell refinement: $P 4$ and XSCANS (Siemens, 1994b). Data reduction: XSCANS. Program(s) used to solve structure: SHELXL86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL-

Plus (Sheldrick, 1990). Software used to prepare material for publication: SHELXL93.

This work was supported by grants from the Natural Science Foundation of China (Nos. 29733090 and 29671012) and the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1273). Services for accessing these data are described at the back of the journal.

## References

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick. G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford University Press.
Sheldrick, G. M. (1990). SHELXTL-Plus. Structure Determination Sofin'are Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen. Germany.
Siemens (1994a). P4. Program for Data Collection. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994b). XSCANS. X-ray Single Cnstal Analytical System. Siemens Analytical X-ray Instruments Inc.. Madison, Wisconsin, USA.
Strukan, N., Cindrić, M. \& Kamenar, B. (1997). Polyhedron, 16, 629634.

Xu, J. N.. Yang, G. Y., Sun. H. R., Wang, T. G. \& Xu, J. Q. (1996). J. Struct. Chem. 15, 253-256.

Zavalij, P. Y., Chirayil, T., Whittingham, M. S., Pecharsky, V. K. \& Jacobson. R. A. (1997). Acta Cřst. C53, 170-171.

Acta Cryst. (1998). C54, 1735-1737

## Bis(trichlorophosphine)iminium Hexachlorophosphate

Ferdinand Belaj<br>Institut für Anorganische Chemie, Karl-Franzens-Universität Graz, Schubertstraße 1, A-8010 Graz, Austria. E-mail: belaj@kfunigraz.ac.at

(Received 22 April 1998: accepted 16 July 1998)


#### Abstract

The structure of the title compound, trichloro[(trichlorophosphoranylidene)iminiolphosphorus( V ) hexachlorophosphate, $\left(\mathrm{NP}_{2} \mathrm{Cl}_{6}\right) \mathrm{PCl}_{6}$ or $\left[\mathrm{N}\left(\mathrm{PCl}_{3}\right)_{2}\right]^{+} . \mathrm{PCl}_{6}^{-}$, contains two formula units in the asymmetric unit. The cations show slightly distorted $C_{2 v}$ symmetry. The $\mathrm{P}-\mathrm{N}$ dis-


tances range from 1.556 (3) to 1.562 (3) $\AA$ and the $\mathrm{P}-$ $\mathrm{N}-\mathrm{P}$ bonding angles are 133.3 (2) and $135.8(2)^{\circ}$.

## Comment

The crystal structure of the title compound, (I), was previously determined by Faggiani et al. (1980). They isolated the compound from a complex mixture of solid products of the reaction of $\mathrm{S}_{7} \mathrm{NH}$ with $\mathrm{PCl}_{5}$. Since they collected reflection data at room temperature using Mo $K \alpha$ radiation only to a maximum $\theta$ of $17.5^{\circ}$, the $\mathrm{P}-\mathrm{N}$ distances in the two cations of the asymmetric unit range from 1.513 (13) to 1.561 (10) $\AA$. In the course of our work on trichlorophosphazenes, more accurate structural data of this fundamental substance were desirable.
In principle, the structure determination of (I) performed at 95 K confirmed the earlier structure analysis. The atomic labelling scheme was retained. The $\mathrm{P}-\mathrm{N}$ distances in the two cations of the asymmetric unit are now much more reliable; as expected, the $\mathrm{P}-\mathrm{N}$ distances within a cation are equal. According to the correlation between the $\mathrm{P}-\mathrm{N}$ distance and the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ bonding angle in acyclic compounds (Belaj, 1995a), the mean value of these distances is larger by about two standard deviations in the cation which is more bent by packing forces. Both cations show only slightly distorted trans-trans conformations [the groupings of $\mathrm{Cl}-\mathrm{P}-$ $\mathrm{N}-\mathrm{P}-\mathrm{Cl}$ display a ' W ' form, with torsion angles Cl -$\mathrm{P}-\mathrm{N}-\mathrm{P} \geq 174.0(2)^{\circ} \mathrm{J}$, as observed in $\mathrm{Cl}_{3} \mathrm{PNP}(\mathrm{O}) \mathrm{Cl}_{2}$ (Belaj, 1993) or in $\mathrm{SO}_{2}\left(\mathrm{NPCl}_{3}\right)_{2}$ (Belaj, 1995b). As discussed in the latter work, the $\mathrm{N}-\mathrm{P}-\mathrm{Cl}$ angles including a Cl atom of the ' W ' fragment (namely $\mathrm{Cl} 14, \mathrm{Cl} 18$, Cl 20 and Cl 22 ) are significantly smaller [109.36(12)$\left.110.04(12)^{\circ}\right]$ than the others [112.76(12)-113.97(12) ${ }^{\circ}$ ], whereas the opposite is true for the $\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}$ angles [106.80(6)-107.64 (6) versus $\left.105.60(6)-106.20(6)^{\circ}\right]$.
In the $\mathrm{PCl}_{6}^{-}$anions, the $\mathrm{P}-\mathrm{Cl}$ distances range from 2.1212 (12) to $2.1624(12) \AA$, the cis $\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}$ angles range from 89.32 (5) to $90.85(5)^{\circ}$ and no trans angle is smaller than $179.0(6)^{\circ}$.
There are two remarkably short inter-ionic $\mathrm{Cl} \cdots \mathrm{Cl}$ distances between the anions [Cl2 $\cdots$ Clll $3.182(2)$ and $\mathrm{Cl} 7 \cdots \mathrm{Cl} 73.194$ (2) $\AA$, compared with the sum of the van der Waals radii of $3.50 \AA$ (Bondi, 1964)]. They are also present but not mentioned in the room-temperature structure determination of Faggiani et al. (1980) [3.186 (8) and 3.260 (7) $\AA$, respectively]. In contrast, the shortest inter-ionic $\mathrm{Cl} \cdots \mathrm{Cl}$ distances are 3.335 (1) $\AA$ between a cation and an anion, and 3.630 (2) $\AA$ between two cations. This strange situation, in which contacts between counter-ions are larger than between anions, shows that a simple inspection of short interionic $\mathrm{Cl} \cdots \mathrm{Cl}$ contacts is not sufficient, and that an examination of the arrangement of the P atoms at the centre of the anions and in the $\mathrm{NPCl}_{3}$ groups of the cations is necessary.

